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Abstract: The most important part of the complex ion chromatography method
development process is retention modeling. It tries to integrate the demands for
high quality ion chromatography with the demands for low consumption of
chemicals, fast analysis, and the short time of method development. This work
compares the properties of the cascade forward and back propagation artificial
neural network in the development of temperature dependent retention models.
The retention times of bromate, bromide, nitrite, iodide, and perchlorate were
modeled in relation with temperature of separation process, concentration of
hydroxide eluent competing ion, and eluent flow rate. Artificial neural networks
were optimized in term of selecting the optimal training algorithm, optimal number
of hidden layer neurons, activation function, and number of experiments needed
for modeling procedure. The retention model based on cascade forward methodol-
ogy exhibited superior predictive ability and, therefore, should be the method of
first choice for the temperature dependent optimization in ion chromatography.
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INTRODUCTION

Mathematical models based on artificial intelligence are proven to be
helpful in the description and understanding of the behavior of ion
chromatography systems and can speed up the method development. The
developed methods are highly selective, provide good chromatographic
resolution, and have shortened chromatographic runtimes.

The first issue in modeling of an ion chromatographic separation is
to determine the relationship between the retention time and parameters
controlling the retention, both in isocratic and=or gradient elution mode.
The most important parameters are the concentrations of eluent compet-
ing ions. Several approaches have been used in isocratic elution retention
modeling. These are: 1) the stoichiometric approach,[1–9] 2) the electro-
static interaction theory,[10,11] and 3) the empirical approach by the
artificial neural networks.[12,13] The comparison between theoretical
and empirical retention models in ion chromatography was extensively
investigated showing that empirical retention models based on the artifi-
cial neural networks exhibit better predictive ability.[14–19] The problem of
retention modeling becomes even more complex when gradient elution is
examined. If gradient elution is predicted on the basis of isocratic elution
information, then the predictive ability is compromised by the applied
isocratic elution model.[20–23] Therefore, it is extremely important to
develop the isocratic elution retention model with as high a predictive
ability as possible.

Recently, the temperature as a separation parameter has attracted
the growing attention. It has been demonstrated that the variation of
column temperature may affect the separation between monovalent
and divalent cations on a Dionex CS12A stationary phase.[24] The separa-
tion of halides has been altered by increasing the temperature from
25 to 60�C.[25] These observations created the need for extensive investi-
gation of temperature dependent retention models. The artificial neural
networks seem to be the reasonable choice, because of their high speed
and accuracy in modeling multiparameter, nonlinear relationships
between input and output variables.

The most commonly used neural network model is the back propaga-
tion network,[12,17–19] which is a multilayer feed forward network. The
disadvantage of multilayer feed forward networks using error back pro-
pagation lies in the fact that the optimal number of hidden layers and
units varies from task to task and, therefore, must be determined experi-
mentally. If too many hidden units are used, the network will learn irre-
levant details in the training set and, once trained, will not generalize well.
Conversely, overly simple networks will fail to describe the real features
of the system properly. One approach to automatically determine the
optimum network size is to start with a minimum size network and then
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to add hidden units and connections gradually. This is the principle of the
so called cascade forward artificial neural networks, which increase the
number of hidden layers dynamically during the learning phase.[26]

The aim of this work is the development of retention models in ion
chromatography by using two approaches: cascade forward and back
propagation artificial neural networks. The retention of bromate,
bromide, nitrite, iodide, and perchlorate were modeled in relation with
the separation temperature, concentration of hydroxide competing ion,
and eluent flow rate. The number of hidden layer neurons, activation func-
tion, and different training algorithms (gradient descent with momentum
and adaptive learning rate, scaled conjugate gradient, Levenberg-
Marquardt and Levenberg-Marquardt with Bayesian regularization) were
optimized in terms of obtaining precise and accurate retention models with
respect of minimization of unnecessary experimentation. The performance
characteristics of developed artificial neural networks retention models
were validated with external experimental data sets.

Theory

The standard multilayer perceptron algorithm can train any network
as long as its weights, net input, and transfer functions have derivative
functions. The weights can be adjusted according to gradient descent:

Dw ¼ g
@E

@w
ð1Þ

where g is the learning rate, Dw is the weight change, and E is the sum of
the squares of errors. The problem arises if a standard gradient descent
method gets trapped into local minima, hence variations were suggested,
i.e., gradient descent with momentum and learning rate according to:

Dwn ¼ aDwxn�1 þ gð1� aÞ @E
@w

ð2Þ

where a is the smoothing factor for applying the momentum and g is the
learning rate.

The cascade forward algorithm was developed by Fahlman and
Lebiere.[26] The procedure begins with a minimal network that has some
inputs and one or more output nodes as indicated by input=output con-
siderations, but no hidden nodes. The gradient descent algorithm, for
example, may be used to train the network. The hidden neurons are
added to the network one by one, thereby obtaining a multilayer struc-
ture. Each new hidden neuron receives a synaptic connection from each
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of the input nodes and also from each preexisting hidden neuron. When a
new hidden neuron is added, the synaptic weights on the input side of
that neuron are frozen; only the synaptic weights on the output side
are trained repeatedly. Learning in cascade forward artificial neural
network takes place as repeating two phase steps. The first involves the
embedded standard learning algorithm, which in our case is back propa-
gation. The learning algorithm begins with no hidden units. The direct
input output connections are trained as far as possible over the entire
training set. When no significant error reduction has occurred after a
certain number of training cycles (controlled maximum number of epochs
set by the user), the entire training set is presented to the network one last
time to measure the error. If the network’s performance is satisfactory,
the procedure is halted; if not, there must be some residual error that
needs to be reduced further. This is achieved by adding a new hidden unit
to the network, using the unit creation algorithm.

The second phase involves the creation of a ‘‘candidate’’ unit. The
candidate unit is connected with all input units and all existing hidden
units. This leads to the cascading architecture, as each new unit is
connected to all preceding units. There are no connections from these
candidate units to the output units. The links leading to each candidate
unit are trained with the selected standard learning algorithm (back
propagation) to maximize the correlation between the residual error of
the network and the activation of the candidate units. The goal of this
adjustment is to maximize S, the sum over all output units o of the
magnitude of the correlation between V, the candidate unit’s value,
and Eo, the residual output error observed at unit o. S is defined as:

S ¼ RojRpðVp � VÞðEp;o � EoÞj ð3Þ

where o is the network output at which the error is measured and p is the
training pattern. The quantities V and Eo are the values of V and Eo

averaged over all patterns. In order to maximize S, @S=@wi, the partial
derivative of S with respect to each of the candidate unit’s incoming
weights, wi is computed.

@S

@wi
¼ RroðEp;o � EoÞfpIi;p ð4Þ

where ro is the sign of the correlation between the candidate’s value and
output o; f 0p is the derivative for pattern p of the candidate unit’s activa-
tion function with respect to the sum of its inputs, and Ii,p is the input
the candidate unit receives from unit i for pattern p. After computing
@S=@wi for each incoming connection, gradient ascent is performed to
maximize S. Once again only a single layer of weights are trained.
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When S stops improving, the new candidate is installed as a unit in the
active network, input weights are frozen, and the cycle is continued as
described above. Because of the absolute value in the formula for S, a
candidate unit cares only about the magnitude of its correlation with
the error at a given output, and not about the sign of the correlation.
As a rule, if a hidden unit correlates positively with the error at a given
unit, it will develop a negative connection weight to that unit, attempting
to cancel some of the error; if the correlation is negative, the output
weight will be positive. Since a unit’s weights to different outputs may
be of mixed sign, a unit can sometimes serve two purposes by developing
a positive correlation with the error at one output and a negative
correlation with the error at another.

Training is stopped if the correlation ceases to improve or a pre-
defined number of cycles are exceeded. The final step of the second phase
is the inclusion, as a hidden unit, of the candidate unit. This involves
freezing all incoming weights (no further modifications will be made)
and creating randomly initialized connections from the selected unit to
the output units. This new hidden unit represents, as a consequence of
its frozen input connections, a permanent feature detector. The weights
from this new unit and the output units will undergo training. Because
the outgoing connections of this new unit are subject to modification,
its relevance to the final behavior of the trained network is not fixed.
These two phases are repeated until either the training pattern has
been learned to a predefined level of acceptance or a preset maximum
number of hidden units have been added, whichever occurs first.

EXPERIMENTAL

Instrumentation

A Dionex DX600 chromatography system (Sunnyvale, CA, USA) was
used in all experiments, equipped with a quaternary gradient pump
(GS50), chromatography module (LC30), and detector module
(ED50A). The separation and suppressor columns used were Dionex
IonPac AG16 (4� 50mm) guard column, IonPac AS16 (4� 250mm)
separation column, and ASRS – ULTRA II� 4mm suppressor, the latest
working in recycle mode. The sample loop volume used was 25 mL. The
system was computer controlled by the Chromeleon 6.70, Build 1820
software. The temperature of separation was set at 30.0�C, 35.0�C,
40.0�C and 45.0�C; the concentration of eluent competing ion was set
at 10.00, 33.00, 56.00, and 80.00mmol=L; the eluent flow rate was set
at 0.70, 0.80, 0.90, and 1.00mL=min. The full factorial experimental
design was used providing A total of 64 experimental data points.
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Reagents and Solutions

Standard solutions of bromate, bromide, nitrite, iodide, and perchlorate
(1.0000 g=L) were prepared from the air dried (at 105�C) salts of indi-
vidual anions of p.a. grade (Merck, Darmstadt, Germany). Appropriate
amounts of individual salts were weighed into volumetric flasks (100mL)
and dissolved with Milli-Q water. Mixed stock standard solutions of all
the mentioned anions (100.00mg=L) was prepared by measuring the
appropriate volumes of standard solutions into 100mL volumetric flasks;
these were filled to the mark with Milli-Q water. Working mixed standard
solutions of anions (10.00mg=L) were prepared by measuring the appro-
priate volume of the mixed stock standard solution into 100mL volu-
metric flasks, again filled with Milli-Q water. Working eluent solutions
were prepared by the appropriate on line dilution of KOH from a stan-
dard Dionex cartridge with Milli-Q water. In all cases, 18MXcm�1 water
(Millipore, Bedford, MA, USA) was used for dilution.

Neural Networks

The two neural networks studied in this paper were the cascade forward
and back propagation artificial neural network. The input layer consisted
of three neurons representing temperature of separation process, concen-
tration of OH� in eluent, and eluent flow rate. The output layer consisted
of five neurons representing the retention of particular anions (bromate,
bromide, nitrite, iodide, and perchlorate). The training algorithm, activa-
tion function connecting input and hidden layer, number of neurons in
hidden layer, and number of experimental data points used for training
calculations had to be optimized. The linear activation function connect-
ing hidden and output layer was used in all cases. The training algorithms
tested were gradient descent with momentum and adaptive learning rate,
scaled conjugate gradient, Levenberg-Marquardt, and Levenberg-
Marquardt with Bayesian regularization. Two activation functions were
used: sigmoid and hyperbolic tangent. The number of neurons in the
hidden layer was varied from 3 to 12 (in the case of the cascade forward
network this was the maximum allowed number, in the case of the back
propagated network this was the fixed number). The number of experi-
mental data points in the training set was varied from 4 to 20; the experi-
mental data was used for validation purposes.

It is preferable that every experimental data point has an equal influ-
ence on the neural network model, if training and testing sets are aimed
to be the representative groups of data of the whole design area. For this
reason, the random function was applied for selection of experimental
data points used for training, testing, and validation sets of data. The
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input experimental data were scaled to obtain their mean values and
standard deviations of 0 and 1, respectively. This was necessary because
most neural networks could accept input values in any range, but they
were sensitive to inputs in a far smaller range.

To test the predictive performance of the developed artificial neural
network retention model, an independent validation set was used followed
by statistical evaluation. All calculations were performed in MATLAB
7.0.0. (MatWorks, Sherborn, USA) environment.

RESULTS AND DISCUSSION

Figures 1 and 2 illustrate the results of optimization of artificial neural
network retention models. One can observe that the cascade forward
artificial neural network optimization produces results with significantly
different error hyperplanes than those obtained by using the back pro-
pagated artificial neural network. The error hyperplanes obtained by
using the cascade forward artificial neural networks show more empha-
sized minimums and maximums. The reason for that lies in the fact that
cascade forward artificial neural networks add and train one neuron at
the time, resulting with an additional factor helping the overall global
search for the minimum on the error hyperplane. More developed error
hyperplanes offers several advantages. The first one is a more accurate
training process due to a lower possibility for getting trapped in the local
minimum. Furthermore, the training process is faster due to higher
gradients in the hyperplane. The overall numbers of local minima are lower
than those observed by using back propagated artificial neural networks.
This indicates the cascade forward artificial neural network is a more
suitable retention modeling methodology in ion chromatography.

Within the chosen artificial neural network methodology, both the
training algorithm and the activation function show the greatest influence
on the results of the overall neural network optimization process.
Figures 1 and 2 show that the Levenberg-Marquardt training algorithm
with Bayesian regularization produces models with the lowest relative
error of all the tested algorithms in all domains of the optimized para-
meters (activation function, number of hidden layer neurons, and number
of experimental data points used for the training procedure). This leads
to the significant increase of predictive ability of the final artificial neural
network retention model and could enable lowering of the number of
experimental data points used for the training procedure without severe
impact on the performance characteristics of the model. The Bayesian
regularization procedure allows for the possibility of overlapping the
training and validation data sets. This advantage may lower significantly
the experimental time and effort by reducing the overall size of data sets.
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Furthermore, Figures 1 and 2 show that the hyperbolic tangent activation
function provides lower relative errors than the sigmoid one, for all
the training algorithms. This result, in conjunction with the previous
discussion about the selection of the training algorithm, indicates the
Levenberg-Marquardt training algorithm with Bayesian regularization
and hyperbolic tangent activation function, is the optimal combination
for retention modeling in ion chromatography.

Figures 1 and 2 also indicate the optimization of the number of hidden
layer neurons and number of experimental data points needed for the
training set. It is preferable to reduce the number of experimental data
points used for training in order to shorten the experimental procedure.
Figures 1 and 2 show that the number of experimental data points used
for training procedure can be reduced to 16 without severe influence on
the predictive ability of the retention model. The optimal allowed num-
ber of neurons in the hidden layer in the case of the selected optimal
conditions (cascade forward artificial neural network, Levenberg-
Marquardt training algorithm with Bayesian regularization, hyperbolic
tangent activation function, and 16 experimental data points for training
set) is 9.

The prediction power of the optimal artificial neural network reten-
tion models was tested with an external experimental data set and the
results are shown in Table 1. The zero value for the intercept and unity
value for the slope are expected to be found within the boundaries of
the 95% confidence interval, which is the case for all of the investigated
anions. The correlation coefficients are found in a very narrow area,
between 0.9977 for nitrite and 0.9940 for perchlorate. That proves the
very good agreement between the measured and predicted retention,
and shows that there is no systematic error in the optimized artificial
neural network retention model. The model can, therefore, be used for
the method development in numerous applications in ion chromatogra-
phy. The model is capable to predict the separation and analysis
time simultaneously, in relation with the separation temperature,

Figure 1. Influence of the number of hidden layer neurons and number of experi-
mental data points on the relative error of the cascade forward artificial neural
network retention model. (a) Gradient descent with adaptive learning rate;
sigmoid activation; (b) Gradient descent with adaptive learning rate; hyperbolic
tangent activation; (c) scaled conjugate gradient; sigmoid activation; (d) scaled
conjugate gradient; hyperbolic tangent activation; (e) Levenberg-Marquardt;
sigmoid activation; (f) Levenberg-Marquardt; hyperbolic tangent activation;
(g) Levenberg-Marquardt algorithm with Bayesian regularization; sigmoid
activation; (h) Levenberg-Marquardt algorithm with Bayesian regularization;
hyperbolic tangent activation.

3
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concentration of eluent competing ion, and eluent flow rate, without
performing unnecessary experimentation.

CONCLUSION

This work describes the development of temperature dependent retention
models in ion chromatography by using cascade feed forward as well as
back propagated artificial neural networks. The retention of bromate,
bromide, nitrite, iodide, and perchlorate were modeled in relation with
the temperature of separation, concentration of eluent competing ion,
and eluent flow rate. It is shown that the cascade forward artificial neural
network structure offers several advantages over the standard back
propagation algorithm. The developed model, by its faster training and
additional accuracy properties, reduces the analysis time and experimen-
tal effort, and provides valuable savings. It is shown that the developed
retention model has superior predictive ability (coefficient of correlation

Figure 2. Influence of the number of hidden layer neurons and number of experi-
mental data points on the relative error of the back propagated artificial neural
network retention model. (a) Gradient descent with adaptive learning rate;
sigmoid activation; (b) Gradient descent with adaptive learning rate; hyperbolic
tangent activation; (c) scaled conjugate gradient; sigmoid activation; (d) scaled
conjugate gradient; hyperbolic tangent activation; (e) Levenberg-Marquardt;
sigmoid activation; (f) Levenberg-Marquardt; hyperbolic tangent activation;
(g) Levenberg-Marquardt algorithm with Bayesian regularization; sigmoid
activation; (h) Levenberg-Marquardt algorithm with Bayesian regularization;
hyperbolic tangent activation.

3

Table 1. The performance characteristics of the optimal artificial neural network
retention model. Predicted against measured retention

Ions Bromate Bromide Nitrite Iodide Perchlorate

R2 0.9968 0.9959 0.9977 0.9957 0.9940
Slope
Value 0.9711 0.9324 0.9188 0.9081 0.9851
Lower 95% 0.8039 0.7978 0.8142 0.8052 0.8698
Upper 95% 1.1384 1.0662 1.0233 1.0109 1.0971

Intercept
Value 0.0472 0.1148 0.0882 0.0303 0.4993
Lower 95% �0.0399 �0.0439 �0.1602 �0.1060 �0.1109
Upper 95% 0.1345 0.2253 0.1605 0.5004 0.8878
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ranged between 0.9977 for nitrite and 0.9940 for perchlorate) and is
not affected by the systematic error (95% confidence intervals include
values zero and one for the intercept and slope, respectively). That indi-
cates that the developed cascade forward artificial neural network
retention model can be beneficial for the development of temperature
dependent methods in ion chromatography.
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D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
4
3
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



11. Okada, T. Interpretation of ion-exchange chromatographic retention based
on an electrical double-layer model. Anal. Chem. 1998, 70, 1692–1700.
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